
Wave propagation in randomly-layered media

R. Cottereau
or rather : Fouque, Garnier, Papanicolaou and Solna 1 (without their permission)
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Acoustic wave propagation in a homogeneous medium

The pressure p(t, z) and velocity u(t, z) in a homogeneous medium with density ρ0 and bulk
modulus K0 verify

ρ0
∂u
∂t

+∇p = F ,

1

K0

∂p

∂t
+∇ · u = 0.

where F is an external force.
This can be rewritten as a standard wave equation for the pressure only :

1

c2
0

∂2p

∂t2
−∆p = −∇ · F

where c0 =
√

K0/ρ0 is the wave velocity in the medium.
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Decomposition into right- and left-going modes
For a large part of this talk, we concentrate on the 1D case.

Acoustic wave equation in a homogeneous 1D medium

ρ0
∂u

∂t
+
∂p

∂z
= F ,

1

K0

∂p

∂t
+
∂u

∂z
= 0,

The system can be rewritten in terms of right-going wave A(t, z) and left-going waves B(t, z) as

∂A

∂z
+

1

c0

∂A

∂t
= δ(z)f (t)

∂B

∂z
−

1

c0

∂B

∂t
= −δ(z)f (t)

where A(t, z) = ζ
−1/2
0 p(t, z) + ζ

1/2
0 u(t, z) and B(t, z) = −ζ−1/2

0 p(t, z) + ζ
1/2
0 u(t, z) and

ζ0 =
√
K0ρ0 is the impedance. We have assumed F (t, z) = 2ζ

1/2
0 δ(z)f (t).

The modes propagate independently one from the other (only in a homogeneous medium)
away from the source.

A(t, z) = a

(
t −

z

c0

)
, B(t, z) = b

(
t +

z

c0

)
The point load generates two waves (one in each direction) of equal energy
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Numerical illustration of acoustic wave propagation in a 1D medium

2.1 Acoustic Wave Equations 13

−5 0 5

0

2

4

6

8

z

t

−5 0 5

0

2

4

6

8

z

t

(a) (b)

Fig. 2.1. Waves generated by the initial conditions p̃(t = 0, z) = p̃0(z), ∂tp̃(t =
0, z) = p̃1(z) in a one-dimensional homogeneous medium with a constant speed of
sound c0 = 1. In picture (a), we choose p̃0(z) = exp(−z2) and p̃1(z) = 0. In picture
(b), we choose p̃0(z) = 0 and p̃1(z) = exp(−z2). The spatial profiles of the field
p̃(t, z) are plotted at different times.

images, which here means extending the solution and the initial conditions to
all of R by odd reflection. More precisely, for (t, z) ∈ [0,∞)× R we define

p̌(t, z) =

{
p̃(t, z) if z ≥ 0,
−p̃(t,−z) if z ≤ 0,

p̌j(z) =

{
p̃j(z) if z ≥ 0,
−p̃j(−z) if z ≤ 0,

j = 0, 1 ,

(2.14)
so that (2.13) becomes

1

c2
0

∂2p̌

∂t2
− ∂2p̌

∂z2
= 0 , (t, z) ∈ (0,∞)× R ,

with the initial conditions p̌(t = 0, z) = p̌0(z) and ∂tp̌(t = 0, z) = p̌1(z). By
d’Alembert’s formula (2.12) we get for (t, z) ∈ [0,∞)× R,

p̌(t, z) =
1

2
[p̌0(z + c0t) + p̌0(z − c0t)] +

1

2c0

∫ z+c0t

z−c0t

p̌1(z
′)dz′ .

Using the definitions (2.14), we obtain the following expression for the solution
p̃(t, z) for (t, z) ∈ [0,∞)2:
If z ≥ c0t ≥ 0, then

p̃(t, z) =
1

2
[p̃0(c0t + z) + p̃0(z − c0t)] +

1

2c0

∫ z+c0t

z−c0t

p̃1(z
′)dz′ . (2.15)

If 0 ≤ z ≤ c0t, then

p̃(t, z) =
1

2
[p̃0(c0t + z)− p̃0(c0t− z)] +

1

2c0

∫ c0t+z

c0t−z

p̃1(z
′)dz′ . (2.16)

(a) p0(z) = exp(−z2), p1(z) = 0
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Fig. 2.1. Waves generated by the initial conditions p̃(t = 0, z) = p̃0(z), ∂tp̃(t =
0, z) = p̃1(z) in a one-dimensional homogeneous medium with a constant speed of
sound c0 = 1. In picture (a), we choose p̃0(z) = exp(−z2) and p̃1(z) = 0. In picture
(b), we choose p̃0(z) = 0 and p̃1(z) = exp(−z2). The spatial profiles of the field
p̃(t, z) are plotted at different times.

images, which here means extending the solution and the initial conditions to
all of R by odd reflection. More precisely, for (t, z) ∈ [0,∞)× R we define

p̌(t, z) =

{
p̃(t, z) if z ≥ 0,
−p̃(t,−z) if z ≤ 0,

p̌j(z) =

{
p̃j(z) if z ≥ 0,
−p̃j(−z) if z ≤ 0,

j = 0, 1 ,

(2.14)
so that (2.13) becomes

1

c2
0

∂2p̌

∂t2
− ∂2p̌

∂z2
= 0 , (t, z) ∈ (0,∞)× R ,

with the initial conditions p̌(t = 0, z) = p̌0(z) and ∂tp̌(t = 0, z) = p̌1(z). By
d’Alembert’s formula (2.12) we get for (t, z) ∈ [0,∞)× R,

p̌(t, z) =
1

2
[p̌0(z + c0t) + p̌0(z − c0t)] +

1

2c0

∫ z+c0t

z−c0t

p̌1(z
′)dz′ .

Using the definitions (2.14), we obtain the following expression for the solution
p̃(t, z) for (t, z) ∈ [0,∞)2:
If z ≥ c0t ≥ 0, then

p̃(t, z) =
1

2
[p̃0(c0t + z) + p̃0(z − c0t)] +

1

2c0

∫ z+c0t

z−c0t

p̃1(z
′)dz′ . (2.15)

If 0 ≤ z ≤ c0t, then

p̃(t, z) =
1

2
[p̃0(c0t + z)− p̃0(c0t− z)] +

1

2c0

∫ c0t+z

c0t−z

p̃1(z
′)dz′ . (2.16)

(b) p0(z) = 0, p1(z) = exp(−z2)

Figure – Waves generated for two sets of initial conditions p(t = 0, z) = p0(z) and ∂tp(t = 0, z) = p1(z) and
no load. The spatial profiles of the field p(t, z) are plotted at different times.
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Numerical illustration of acoustic wave propagation in a 1D medium

3.3 Scattering by a Single Interface 37
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Fig. 3.1. Waves generated by a point source F (t, z) = f(t)δ(z) in a homogeneous
medium. Here f(t) = exp(−t2), K = ρ = 1. The spatial profiles of the velocity field
(a) and of the pressure field (b) are plotted at times t = −2, t = −1, t = 0, t = 1,
. . ., t = 6.

velocity fields. The goal of this section is to analyze the scattering problem in
terms of right- and left-going modes.

We introduce the local velocities cj =
√

Kj/ρj and impedances ζj =√
Kjρj and the right- and left-going modes defined by

z < 0 :

{
A0(t, z) = ζ

−1/2
0 p(t, z) + ζ

1/2
0 u(t, z) ,

B0(t, z) = −ζ−1/2
0 p(t, z) + ζ

1/2
0 u(t, z) ,

(3.6)

z > 0 :

{
A1(t, z) = ζ

−1/2
1 p(t, z) + ζ

1/2
1 u(t, z) ,

B1(t, z) = −ζ−1/2
1 p(t, z) + ζ

1/2
1 u(t, z) .

(3.7)

For j = 0, 1, the pairs (Aj , Bj) satisfy the following system in their respec-
tive half-spaces:

∂

∂z

[
Aj

Bj

]
=

1

cj

[
−1 0
0 1

]
∂

∂t

[
Aj

Bj

]
, (3.8)

which means that Aj(t, z) is a function of t − z/cj only, and Bj(t, z) is a
function of t + z/cj only.

We assume that a right-going wave with the time profile f is incoming from
the left and is partly reflected by the interface. We also assume a radiation
condition in the right half-space so that no wave is coming from the right.
Assume that f is compactly supported in (0,∞). We next introduce two ways
to define proper boundary conditions:

(I) We can consider an initial value problem with initial conditions given
at some time t0 < 0 by

(a) Pressure p(t, z)
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Fig. 3.1. Waves generated by a point source F (t, z) = f(t)δ(z) in a homogeneous
medium. Here f(t) = exp(−t2), K = ρ = 1. The spatial profiles of the velocity field
(a) and of the pressure field (b) are plotted at times t = −2, t = −1, t = 0, t = 1,
. . ., t = 6.

velocity fields. The goal of this section is to analyze the scattering problem in
terms of right- and left-going modes.

We introduce the local velocities cj =
√

Kj/ρj and impedances ζj =√
Kjρj and the right- and left-going modes defined by

z < 0 :

{
A0(t, z) = ζ

−1/2
0 p(t, z) + ζ

1/2
0 u(t, z) ,

B0(t, z) = −ζ−1/2
0 p(t, z) + ζ

1/2
0 u(t, z) ,

(3.6)

z > 0 :

{
A1(t, z) = ζ

−1/2
1 p(t, z) + ζ

1/2
1 u(t, z) ,

B1(t, z) = −ζ−1/2
1 p(t, z) + ζ

1/2
1 u(t, z) .

(3.7)

For j = 0, 1, the pairs (Aj , Bj) satisfy the following system in their respec-
tive half-spaces:

∂

∂z

[
Aj

Bj

]
=

1

cj

[
−1 0
0 1

]
∂

∂t

[
Aj

Bj

]
, (3.8)

which means that Aj(t, z) is a function of t − z/cj only, and Bj(t, z) is a
function of t + z/cj only.

We assume that a right-going wave with the time profile f is incoming from
the left and is partly reflected by the interface. We also assume a radiation
condition in the right half-space so that no wave is coming from the right.
Assume that f is compactly supported in (0,∞). We next introduce two ways
to define proper boundary conditions:

(I) We can consider an initial value problem with initial conditions given
at some time t0 < 0 by

(b) Velocity u(t, z)

Figure – Waves generated by a point load F (z, t) = δ(z) exp(−t2) in a medium initially at rest.
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Scattering by a single interface

38 3 Waves in Layered Media

u(t = t0, z) =
1

2ζ
1/2
0

f

(
t0 −

z

c0

)
, p(t = t0, z) =

ζ
1/2
0

2
f

(
t0 −

z

c0

)
. (3.9)

As shown in the previous section, these initial conditions generate a pure right-
going wave whose support at time t = t0 is in the interval z ∈ (−∞, c0t0),
which lies in the left half-space.

!
0 z

Medium 0

!

A1(t, L)

"
B0(t, 0)

!
A0(t, 0)

Medium 1

Fig. 3.2. Scattering of a pulse by an interface.

(II) We can consider a point source located at some point z0 < 0 and
generating a forcing term of the form

F (t, z) = ζ
1/2
0 f(t− z0/c0)δ(z − z0) . (3.10)

As seen in the previous section, this point source generates two waves. The left-
going wave is propagating into the negative z-direction and will never interact
with the interface, so we will ignore it. The right-going wave first propagates in
the homogeneous left half-space and it eventually interacts with the interface
z = 0.

In terms of the right- and left-going waves, these two formulations give the
same descriptions. We have A0(t, z) = f(t− z/c0) for z < 0, and B1(t, z) = 0
for z > 0, and consequently, at the interface z = 0,

A0(t, 0) = f (t) , B1(t, 0) = 0 . (3.11)

Note that the delays introduced in the initial conditions (3.9) and in the
forcing term (3.10) have been chosen so that the boundary conditions (3.11)
have a very simple form.

The pairs (A0, B0) and (A1, B1) are coupled by the jump conditions at
z = 0 corresponding to the continuity of the velocity and pressure
fields:

u(t, 0) = ζ
−1/2
0

(
A0(t, 0) + B0(t, 0)

2

)
= ζ

−1/2
1

(
A1(t, 0) + B1(t, 0)

2

)
,

p(t, 0) = ζ
1/2
0

(
A0(t, 0)−B0(t, 0)

2

)
= ζ

1/2
1

(
A1(t, 0)−B1(t, 0)

2

)
,

We consider two half-spaces, separated by an interface at z = 0

ρ(z) =

{
ρ0 if z < 0

ρ1 if z > 0
, K(z) =

{
K0 if z < 0

K1 if z > 0
, cj =

√
Kj

ρj
, ζj =

√
Kjρj .

In terms of right- and left-going modes in each of the half-spaces, the equations are

∂

∂z

[
A0

B0

]
=

1

c0

[
−1 0
0 1

]
∂

∂t

[
A0

B0

]
,

∂

∂z

[
A1

B1

]
=

1

c1

[
−1 0
0 1

]
∂

∂t

[
A1

B1

]
.

The continuity of pressure and velocity at the interface z = 0 induces in terms of modes[
A1(t, 0)
B1(t, 0)

]
= J0

[
A0(t, 0)
B0(t, 0)

]
, J0 =

[
r

(+)
0 r

(−)
0

r
(−)
0 r

(+)
0

]
,

where r
(±)
0 =

(√
ζ1/ζ0 ±

√
ζ0/ζ1

)
/2 and J0 is the interface propagator.
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Reflection and transmission at a single interface

38 3 Waves in Layered Media

u(t = t0, z) =
1

2ζ
1/2
0

f

(
t0 −

z

c0

)
, p(t = t0, z) =

ζ
1/2
0

2
f

(
t0 −

z

c0

)
. (3.9)

As shown in the previous section, these initial conditions generate a pure right-
going wave whose support at time t = t0 is in the interval z ∈ (−∞, c0t0),
which lies in the left half-space.
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A0(t, 0)

Medium 1

Fig. 3.2. Scattering of a pulse by an interface.

(II) We can consider a point source located at some point z0 < 0 and
generating a forcing term of the form

F (t, z) = ζ
1/2
0 f(t− z0/c0)δ(z − z0) . (3.10)

As seen in the previous section, this point source generates two waves. The left-
going wave is propagating into the negative z-direction and will never interact
with the interface, so we will ignore it. The right-going wave first propagates in
the homogeneous left half-space and it eventually interacts with the interface
z = 0.

In terms of the right- and left-going waves, these two formulations give the
same descriptions. We have A0(t, z) = f(t− z/c0) for z < 0, and B1(t, z) = 0
for z > 0, and consequently, at the interface z = 0,

A0(t, 0) = f (t) , B1(t, 0) = 0 . (3.11)

Note that the delays introduced in the initial conditions (3.9) and in the
forcing term (3.10) have been chosen so that the boundary conditions (3.11)
have a very simple form.

The pairs (A0, B0) and (A1, B1) are coupled by the jump conditions at
z = 0 corresponding to the continuity of the velocity and pressure
fields:

u(t, 0) = ζ
−1/2
0

(
A0(t, 0) + B0(t, 0)

2

)
= ζ

−1/2
1

(
A1(t, 0) + B1(t, 0)

2

)
,

p(t, 0) = ζ
1/2
0

(
A0(t, 0)−B0(t, 0)

2

)
= ζ

1/2
1

(
A1(t, 0)−B1(t, 0)

2

)
,

Assuming an incoming wave from the left on the interface, and no incoming wave from the right

A0(t, 0) = f (t), B1(t, 0) = 0,

the reflection R0 and transmission T0 coefficients at the interface are defined as

B0(t, 0) = R0f (t) = −
r

(−)
0

r
(+)
0

f (t), A1(t, 0) = T0f (t) =
1

r
(−)
0

f (t),

with R2
0 + T 2

0 = 1.
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Numerical illustration of reflection and transmission at a single interface

40 3 Waves in Layered Media
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Fig. 3.3. Scattering of a pulse by an interface separating two homogeneous half-
spaces (c0, ζ0, z < 0) and (c1, ζ1, z > 0). Here the incoming right-going wave has a
Gaussian profile, c0 = ζ0 = 1, and c1 = ζ1 = 2. The spatial profiles of the velocity
field (a) and of the pressure field (b) are plotted at times t = −4, t = −3,. . ., t = 6.

ρ(z) =




ρ0 if z < 0 ,
ρ1 if z ∈ [0, L] ,
ρ2 if z > L ,

K(z) =





K0 if z < 0 ,
K1 if z ∈ [0, L] .
K2 if z > L .

We introduce the local velocities cj =
√

Kj/ρj and impedances ζj =
√

Kjρj

and the local right- and left-going modes defined by

Aj(t, z) = ζ
−1/2
j p(t, z)+ ζ

1/2
j u(t, z) , Bj(t, z) = −ζ−1/2

j p(t, z)+ ζ
1/2
j u(t, z) ,

with j = 0 for z < 0, j = 1 for z ∈ [0, L], and j = 2 for z > L. The boundary
conditions correspond to an impinging pulse at the interface z = 0 and a
radiation condition at z = L2:

A0(t, 0) = f (t) , B2(t, L) = 0 .

The propagation equations (3.8) in each homoegeneous region show that
Aj is a function of t − z/cj only and Bj is a function of t + z/cj only. The
waves inside the slab [0, L] are therefore of the form

A1(t, z) = a1

(
t− z

c1

)
, B1(t, z) = b1

(
t +

z

c1

)
,

while the reflected wave for z < 0 is of the form

B0(t, z) = b0

(
t +

z

c0

)
,

and the transmitted wave for z > L is of the form

(a) Pressure p(t, z)

40 3 Waves in Layered Media
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Fig. 3.3. Scattering of a pulse by an interface separating two homogeneous half-
spaces (c0, ζ0, z < 0) and (c1, ζ1, z > 0). Here the incoming right-going wave has a
Gaussian profile, c0 = ζ0 = 1, and c1 = ζ1 = 2. The spatial profiles of the velocity
field (a) and of the pressure field (b) are plotted at times t = −4, t = −3,. . ., t = 6.

ρ(z) =




ρ0 if z < 0 ,
ρ1 if z ∈ [0, L] ,
ρ2 if z > L ,

K(z) =





K0 if z < 0 ,
K1 if z ∈ [0, L] .
K2 if z > L .

We introduce the local velocities cj =
√

Kj/ρj and impedances ζj =
√

Kjρj

and the local right- and left-going modes defined by

Aj(t, z) = ζ
−1/2
j p(t, z)+ ζ

1/2
j u(t, z) , Bj(t, z) = −ζ−1/2

j p(t, z)+ ζ
1/2
j u(t, z) ,

with j = 0 for z < 0, j = 1 for z ∈ [0, L], and j = 2 for z > L. The boundary
conditions correspond to an impinging pulse at the interface z = 0 and a
radiation condition at z = L2:

A0(t, 0) = f (t) , B2(t, L) = 0 .

The propagation equations (3.8) in each homoegeneous region show that
Aj is a function of t − z/cj only and Bj is a function of t + z/cj only. The
waves inside the slab [0, L] are therefore of the form

A1(t, z) = a1

(
t− z

c1

)
, B1(t, z) = b1

(
t +

z

c1

)
,

while the reflected wave for z < 0 is of the form

B0(t, z) = b0

(
t +

z

c0

)
,

and the transmitted wave for z > L is of the form

(b) Velocity u(t, z)

Figure – Waves generated at a single interface by a wave incoming from the left.
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Scattering by a homogeneous slab
3.4 Single-Layer Case 41
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!
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"
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Fig. 3.4. Scattering of a pulse by a single layer.

A2(t, z) = a2

(
t− z − L

c2

)
.

We want to identify the functions b0 and a2, which give the shapes of the
reflected and transmitted waves.

3.4.2 Reflection and Transmission Coefficient for a Single Layer

The unknown functions b0 and a2 can be obtained from the continuity condi-
tions for the velocity and pressure at the two interfaces. At z = 0 we have

[
A1(t, 0)
B1(t, 0)

]
= J0

[
A0(t, 0)
B0(t, 0)

]
, J0 =

[
r
(+)
0 r

(−)
0

r
(−)
0 r

(+)
0

]
,

with r
(±)
0 = 1

2

(√
ζ1/ζ0 ±

√
ζ0/ζ1

)
. Similarly, at z = L,

[
A2(t, L)
B2(t, L)

]
= J1

[
A1(t, L)
B1(t, L)

]
, J1 =

[
r
(+)
1 r

(−)
1

r
(−)
1 r

(+)
1

]
,

with r
(±)
1 = 1

2

(√
ζ2/ζ1 ±

√
ζ1/ζ2

)
. We can write these relations in terms of

the functions aj, bj as

[
a1(t)
b1(t)

]
= J0

[
f(t)
b0(t)

]
,

[
a2(t)

0

]
= J1

[
a1(t− L/c1)
b1(t + L/c1)

]
,

which can be solved to get the reflected and transmitted waves. The situation
is more complicated than in the case of a single interface, because of the time
delays ±L/c1. A convenient and general way to handle these delays is by
going to the frequency domain, so that the time shifts are replaced by phase
factors. The Fourier transforms of the modes are defined by

âj(ω) =

∫
aj(t)e

iωtdt , b̂j(ω) =

∫
aj(t)e

iωtdt .

We consider a homogeneous slab of thickness L in-between two homogeneous half-spaces

ρ(z) =


ρ0 if z < 0

ρ1 if z ∈ [0, L]

ρ2 if z > L

, K(z) =


K0 if z < 0

K1 if z ∈ [0, L]

K2 if z > L

, cj =

√
Kj

ρj
, ζj =

√
Kjρj .

In terms of right- and left-going modes in each of the domains, 0 ≤ j ≤ 2, the equations are

∂

∂z

[
Aj

Bj

]
=

1

cj

[
−1 0
0 1

]
∂

∂t

[
Aj

Bj

]
.

We assume, as earlier,
A0(t, 0) = f (t), B2(t, L) = 0
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Frequency-dependent interface propagator

The continuity of pressure and velocity at the interfaces z = 0 and z = L induces[
A1(t, 0)
B1(t, 0)

]
= J0

[
f (t)

B0(t, 0)

]
,

[
A2(t, L)

0

]
= J1

[
A1(t, L)
B1(t, L)

]
, with Jj =

[
r

(+)
j r

(−)
j

r
(−)
j r

(+)
j

]
,

and r
(±)
j =

(√
ζj+1/ζj ±

√
ζj/ζj+1

)
/2. Equivalently :[

a1(t, 0)
b1(t, 0)

]
= J0

[
f (t)
b0(t)

]
,

[
a2(t)

0

]
= J1

[
a1(t − L/c1)
b1(t + L/c1)

]
.

The time delay makes the situation more complex to handle than for a single interface. In the
frequency domain, time shifts are transformed into phase factors, as

[
â1(ω)

b̂1(ω)

]
= J0

[
f̂ (ω)

b̂0(ω)

]
,

[
â2(ω)

0

]
= Ĵ1(ω)

[
â1(ω)

b̂1(ω)

]
, Ĵ1(ω) =

r (+)
1 e

iωL
c1 r

(−)
1 e

− iωL
c1

r
(−)
1 e

iωL
c1 r

(+)
1 e

− iωL
c1

 ,
where a hat denotes a Fourier transform âj (ω) =

∫
R aj (t)e iωtdt and∫

R
aj (t − t0)e iωtdt = âj (ω)e iωt0
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Reflection and transmission of a homogeneous slab

Finally [
â2(ω)

0

]
= K̂0(ω)

[
f̂ (ω)

b̂0(ω)

]
, K̂0(ω) = Ĵ1(ω)J0 =

[
Û(ω) V̂ (ω)

V̂ (ω) Û(ω)

]
,

Defining the reflection R̂(ω) and transmission T̂ (ω) coefficients of the slab as

b̂0(ω) = R̂(ω)f̂ (ω), â2(ω) = T̂ (ω)f̂ (ω),

we obtain

R̂(ω) = −
V̂ (ω)

Û(ω)
=
R1e

2i ωL
c1 +R0

1 +R0R1e
2i ωL

c1

,

T̂ (ω) =
1

Û(ω)
=

T0T1e
i ωL
c1

1 +R0R1e
2i ωL

c1

,

and Rj and Tj are the reflection and transmission coefficients of interface j .
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Numerical illustration of reflection and transmission on a homogeneous slab
46 3 Waves in Layered Media
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Fig. 3.6. Sketch of scattering sequences.

R ∗ eikωct =

[
R0 −

∞∑

n=1

R2n−1
0 T 2

0

]
eikωct = 0 .

As a result, no wave is reflected at all, and by conservation of energy the
wave is fully transmitted. Another way to understand this phenomenon in-
volves analyzing the successive waves arriving at the interface z = L. These
waves have the same phase and therefore they interfere constructively, which
enhances the transmittivity of the layer to the point where it becomes equal
to 1.
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Fig. 3.7. Scattering of a pulse by a layer with parameters (c1, ζ1) separating two
homogeneous half-spaces with the same parameters (c0, ζ0). Here the incoming right-
going wave has a Gaussian profile, c0 = ζ0 = 1, c1 = ζ1 = 2, and the thickness of
the layer is 10. The spatial profiles of the velocity field (a) and of the pressure field
(b) are plotted at times t = −4, t = −3,. . ., t = 12. One can observe the first two
terms (n = 0 and n = 1) of the reflected-impulse response of the layer.

Figure – Sketch of scattering sequence for a wave incoming from the left on a homogeneous slab.
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Fig. 3.6. Sketch of scattering sequences.

R ∗ eikωct =

[
R0 −

∞∑

n=1

R2n−1
0 T 2

0

]
eikωct = 0 .

As a result, no wave is reflected at all, and by conservation of energy the
wave is fully transmitted. Another way to understand this phenomenon in-
volves analyzing the successive waves arriving at the interface z = L. These
waves have the same phase and therefore they interfere constructively, which
enhances the transmittivity of the layer to the point where it becomes equal
to 1.
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Fig. 3.7. Scattering of a pulse by a layer with parameters (c1, ζ1) separating two
homogeneous half-spaces with the same parameters (c0, ζ0). Here the incoming right-
going wave has a Gaussian profile, c0 = ζ0 = 1, c1 = ζ1 = 2, and the thickness of
the layer is 10. The spatial profiles of the velocity field (a) and of the pressure field
(b) are plotted at times t = −4, t = −3,. . ., t = 12. One can observe the first two
terms (n = 0 and n = 1) of the reflected-impulse response of the layer.

(a) Pressure p(t, z)
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R ∗ eikωct =

[
R0 −

∞∑

n=1

R2n−1
0 T 2

0

]
eikωct = 0 .

As a result, no wave is reflected at all, and by conservation of energy the
wave is fully transmitted. Another way to understand this phenomenon in-
volves analyzing the successive waves arriving at the interface z = L. These
waves have the same phase and therefore they interfere constructively, which
enhances the transmittivity of the layer to the point where it becomes equal
to 1.

−10 −5 0 5 10 15
−5

0

5

10

z

t

velocity field

n=0 
n=1 

−10 −5 0 5 10 15
−5

0

5

10

z

t

pressure field

INCOMING WAVE 

REFLECTED WAVE 

TRANSMITTED WAVE 

(a) (b)

Fig. 3.7. Scattering of a pulse by a layer with parameters (c1, ζ1) separating two
homogeneous half-spaces with the same parameters (c0, ζ0). Here the incoming right-
going wave has a Gaussian profile, c0 = ζ0 = 1, c1 = ζ1 = 2, and the thickness of
the layer is 10. The spatial profiles of the velocity field (a) and of the pressure field
(b) are plotted at times t = −4, t = −3,. . ., t = 12. One can observe the first two
terms (n = 0 and n = 1) of the reflected-impulse response of the layer.

(b) Velocity u(t, z)

Figure – Waves scattered by a homogeneous slab from a wave incoming from the left.
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Effective properties of a finely-layered slab

We consider a multi-layered with 2N layers in-between two homogeneous half-spaces

(ρ,K)(z) =


(ρe ,Ke) if z < L0

(ρa,Ka) if z ∈ [L2j , L2j+1], j = 0, 1, ...,N − 1

(ρb,Kb) if z ∈ [L2j+1, L2(j+1)], j = 0, 1, ...,N − 1

(ρe′ ,Ke′ ) if z > L2N

,

We introduce the thicknesses and time lags, j ≥ 1 :

∆j = Lj − Lj−1
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Interface propagator for a pair of interfaces

The scattering problem is set as

[
â2N+1(ω)

0

]
= K̂2N(ω)

[
f̂ (ω)

b̂0(ω)

]
, K̂2N(ω) = Ĵ2N(ω)Ĵ2N−1(ω)

N−1∏
j=1

Ĵ2j (ω)Ĵ2j−1(ω)

 J0.

The interface propagator for a pair of two successive interfaces is

Ĵ2j (ω)Ĵ2j−1(ω) =

 r (+)e
iω

∆2j
cb −r (−)e

−iω
∆2j
cb

−r (−)e
iω

∆2j
cb r (+)e

−iω
∆2j
cb


r (+)e

iω
∆2j−1

ca r (−)e
−iω

∆2j−1
ca

r (−)e
iω

∆2j−1
ca r (+)e

−iω
∆2j−1

ca



=

e iω
(

∆2j−1
ca

+
∆2j
cb

)
0

0 e
−iω

(
∆2j−1

ca
+

∆2j
cb

)
+ r (−)

[
r (−)δ

(+)
j −r (+)δ

(−)
j

−r (+)δ
(+)
j r (−)δ

(−)
j

]

where r (±) =
(√

ζb/ζa ±
√
ζa/ζb

)
/2, with r (+)2 − r (−)2 = 1 and

δ
(±)
j = ±2e

±iω
∆2j−1

ca sin

(
ω

∆2j

cb

)
.
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Effective properties of a finely-layered slab : periodic case

We now assume a periodic case, with all layers of the same thickness, 1 ≤ j ≤ N

∆2j−1 = ∆2j = ∆,

(
1

ca
+

1

cb

)
=

2

c
, δ

(±)
j = ±2ω

∆

cb
+O(∆2)

and

K̂2N(ω) = Ĵ2N(ω,∆)Ĵ2N−1(ω,∆)
(
Ĵ(2)(ω,∆)

)N−1
J0.

where

Ĵ(2)(ω,∆) = I2 + 2iω∆

 1
c

+ r (−)2

cb

r (+)r (−)

cb

− r (+)r (−)

cb
− 1

c
− r (−)2

cb

+O
(
∆2
)

and

lim
∆→0

(
Ĵ(2)(ω,∆)

)N−1
=

[
r

(+)
b∗ r

(−)
b∗

r
(−)
b∗ r

(+)
b∗

][
e iω

L
c 0

0 e−iω L
c

][
r

(+)
∗a r

(−)
∗a

r
(−)
∗a r

(+)
∗a

]
Eventually (using also that J2N(ω,∆)J2N−1(ω,∆)→∆→0 Je′b)

lim
∆→0

K̂2N+1(ω) = Je′∗
(
Ĵ(2)(ω,∆)

)N
J∗e .
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Numerical illustration of a wave impacting a periodic slab66 4 Effective Properties of Randomly Layered Media
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Fig. 4.1. Transmission of a pulse though a piecewise-constant periodic medium
occupying the slab [0, L] with L = 4. The medium is described by (4.1) with
ρe = ρa = ρb = ρe′ = 1, Ke = Ke′ = 1, and 1/Ka = 0.2, 1/Kb = 1.8, so that
K̄ = 1 (matched medium). The initial pulse is the second derivative of a Gaussian,
with Fourier transform f̂(ω) = ω2 exp(−ω2/5). The (root-mean squared) time pulse
width is Trms =

√
7/15 ∼ 0.68. We plot the pressure field. In the left picture (re-

spectively right picture), the size of the layers is ∆ = 0.4 (respectively ∆ = 0.08). In
the left picture, a significant backscattering can be observed, and the transmitted
pulse is distorted. In the right picture, the backscattered wave is negligible, and the
transmitted pulse is very close to the incoming pulse.

∆j = δUj , (4.17)

where the Uj’s are independent and identically distributed random variables
with the common distribution being uniform over [1/2, 3/2], and δ > 0 is a
small parameter. This particular choice is not essential in the analysis. Note
that in this case the layer size is bounded and bounded away from zero, and
its average is equal to δ.

We consider δ as a small parameter and take the number of layers 2N + 1
of order δ−1. This is achieved by setting L′/δ = 2N + 1 with a fixed L′ > 0
and restricting δ to values such that L′/δ is an odd integer. Note that the size

L of the random slab is the random variable L =
∑2N+1

j=1 ∆j with expected
value

E[L] = (2N + 1)δ = L′

and variance

E
[
(L− E[L])2

]
= (2N + 1)

δ2

12
=
δL′

12

δ→0−→ 0 .

In other words, L converges to L′ in quadratic mean, and thus in probability.
The propagator K̂2N+1(ω) defined by (4.3) can now be written as the

product of random matrices

(a) Large period λ ≈ `c
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Fig. 4.1. Transmission of a pulse though a piecewise-constant periodic medium
occupying the slab [0, L] with L = 4. The medium is described by (4.1) with
ρe = ρa = ρb = ρe′ = 1, Ke = Ke′ = 1, and 1/Ka = 0.2, 1/Kb = 1.8, so that
K̄ = 1 (matched medium). The initial pulse is the second derivative of a Gaussian,
with Fourier transform f̂(ω) = ω2 exp(−ω2/5). The (root-mean squared) time pulse
width is Trms =

√
7/15 ∼ 0.68. We plot the pressure field. In the left picture (re-

spectively right picture), the size of the layers is ∆ = 0.4 (respectively ∆ = 0.08). In
the left picture, a significant backscattering can be observed, and the transmitted
pulse is distorted. In the right picture, the backscattered wave is negligible, and the
transmitted pulse is very close to the incoming pulse.

∆j = δUj , (4.17)

where the Uj’s are independent and identically distributed random variables
with the common distribution being uniform over [1/2, 3/2], and δ > 0 is a
small parameter. This particular choice is not essential in the analysis. Note
that in this case the layer size is bounded and bounded away from zero, and
its average is equal to δ.

We consider δ as a small parameter and take the number of layers 2N + 1
of order δ−1. This is achieved by setting L′/δ = 2N + 1 with a fixed L′ > 0
and restricting δ to values such that L′/δ is an odd integer. Note that the size

L of the random slab is the random variable L =
∑2N+1

j=1 ∆j with expected
value

E[L] = (2N + 1)δ = L′

and variance

E
[
(L− E[L])2

]
= (2N + 1)

δ2

12
=
δL′

12

δ→0−→ 0 .

In other words, L converges to L′ in quadratic mean, and thus in probability.
The propagator K̂2N+1(ω) defined by (4.3) can now be written as the

product of random matrices

(b) Short period λ� `c

Figure – Waves generated around periodic slabs with different periods by a wave incoming from the left. The
half-spaces have the same properties as the homogenized medium.

In the limit ∆→ 0, we retrieve a homogeneous equation

When the wave enters (resp. exits) the slab, it interacts with the homogenized medium,
NOT the first (resp. last) layer.
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Effective properties of a randomly-layered slab with two materials
We assume the layer thickness is now a random variable

∆j = δUj

where δ > 0 and the Uj are independent and identically distributed uniform random variables over
[1/2, 3/2]. The thickness of the slab is a random variable L with

E[L] = 2Nδ = L, E
[
(L− L)2

]
=

2Nδ2

12
→δ→0 0

The scattering problem yields (again grouping the layers by pairs)

K̂2N(ω) = Ĵ2N(ω,∆)Ĵ2N−1(ω,∆)
(
Ĵ(2)(ω,∆)

)N−1
J0.

where Taylor expansion still can be used Ĵ(2)(ω, δ) = I2 + iωδĴ
(2)
j,1 +O

(
δ2
)
, where

Ĵ
(2)
j,1 =

r (+)2
(

U2j−1

ca
+

U2j

cb

)
− r (−)2

(
U2j−1

ca
− U2j

cb

)
2r (+)r (−) U2j

cb

−2r (+)r (−) U2j

cb
−r (+)2

(
U2j−1

ca
+

U2j

cb

)
+ r (−)2

(
U2j−1

ca
− U2j

cb

)
is a random matrix, independent of δ and the law of large numbers yields

δ

N∑
j=1

Ĵ
(2)
j,1 →N→∞ δNE

[
Ĵ

(2)
j,1

]
=

L

2
Ĵ

(2)
1
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Numerical illustration of a wave impacting a slab with random thicknesses
4.2 Random Media Varying on a Fine Scale 69
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Fig. 4.2. Transmission of a pulse though a piecewise-constant random medium
occupying the slab [0, L] with L = 4. The medium is described by (4.1) with
ρe = ρa = ρb = ρe′ = 1, Ke = Ke′ = 1, and 1/Ka = 0.2, 1/Kb = 1.8, so that
K̄ = 1 (matched medium). The initial pulse is the second derivative of a Gaussian
pulse function with width Trms =

√
7/15 ≈ 0.68. The sizes of the layers ∆j are

random and as described by (4.17). The ∆j ’s are independent and identically dis-
tributed random variables with uniform distribution over [0.2, 0.6] with mean δ = 0.4
(left picture), and uniform distribution over [0.04, 0.12] with mean δ = 0.08 (right
picture). Homogenization is seen clearly, although the convergence (as the size of
the layers goes to zero) is not as rapid as in the periodic case (compare the reflected
signals in the two right pictures of Figures 4.1–4.2). If we compare the simulations in
the periodic and in the random cases, we see that fluctuations behind the main pulse
are more important in the random case than in the periodic case, where they are
practically nonexistent for δ = 0.08. This is one of our motivations for introducing,
as we do in the next sections, a different approach to the asymptotic analysis that
is more suitable for long-distance propagation in random media.

with jumps. This can serve as a model for waves propagating through sed-
imentary layers of the earth’s crust. In this case the layers are formed by
a deposition process that results in a thin horizontally layered structure. We
consider the idealized situation in which the parameters vary only with depth,
and moreover, we make the important assumption that the variations are on a
relatively fine scale. We assume that the scale of variation is small compared
to the distance traveled by the pulse, as well as compared to the wavelength
of the pulse. One may then expect that the waves are not strongly affected
by the impedance in any particular layer. When a pulse propagates through
such fine layers, the interaction with each layer is small, and propagation is
not much affected. The pulse therefore travels as if the medium were homo-
geneous with the layers replaced by “averaged” ones. In general, we refer to
this homogeneous medium as the homogenized medium. It is also referred
to as an effective, average, or equivalent medium.

(a) Large period λ ≈ `c
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Fig. 4.2. Transmission of a pulse though a piecewise-constant random medium
occupying the slab [0, L] with L = 4. The medium is described by (4.1) with
ρe = ρa = ρb = ρe′ = 1, Ke = Ke′ = 1, and 1/Ka = 0.2, 1/Kb = 1.8, so that
K̄ = 1 (matched medium). The initial pulse is the second derivative of a Gaussian
pulse function with width Trms =

√
7/15 ≈ 0.68. The sizes of the layers ∆j are

random and as described by (4.17). The ∆j ’s are independent and identically dis-
tributed random variables with uniform distribution over [0.2, 0.6] with mean δ = 0.4
(left picture), and uniform distribution over [0.04, 0.12] with mean δ = 0.08 (right
picture). Homogenization is seen clearly, although the convergence (as the size of
the layers goes to zero) is not as rapid as in the periodic case (compare the reflected
signals in the two right pictures of Figures 4.1–4.2). If we compare the simulations in
the periodic and in the random cases, we see that fluctuations behind the main pulse
are more important in the random case than in the periodic case, where they are
practically nonexistent for δ = 0.08. This is one of our motivations for introducing,
as we do in the next sections, a different approach to the asymptotic analysis that
is more suitable for long-distance propagation in random media.

with jumps. This can serve as a model for waves propagating through sed-
imentary layers of the earth’s crust. In this case the layers are formed by
a deposition process that results in a thin horizontally layered structure. We
consider the idealized situation in which the parameters vary only with depth,
and moreover, we make the important assumption that the variations are on a
relatively fine scale. We assume that the scale of variation is small compared
to the distance traveled by the pulse, as well as compared to the wavelength
of the pulse. One may then expect that the waves are not strongly affected
by the impedance in any particular layer. When a pulse propagates through
such fine layers, the interaction with each layer is small, and propagation is
not much affected. The pulse therefore travels as if the medium were homo-
geneous with the layers replaced by “averaged” ones. In general, we refer to
this homogeneous medium as the homogenized medium. It is also referred
to as an effective, average, or equivalent medium.

(b) Short period λ� `c

Figure – Waves generated around a random slabs with different periods by a wave incoming from the left. The
half-spaces have the same properties as the homogenized medium.

The result is qualitatively the same as in a periodic medium.
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Effective properties of a finely-layered slab : general stochastic case

70 4 Effective Properties of Randomly Layered Media

How can we characterize this equivalent medium? We start by writing the
medium parameters in the form

ρ = ρ(z/l) , K = K(z/l) , (4.19)

with l a parameter that can be viewed as the layer size. Thus, ρ(z) is the
variable density when observed through a magnifying glass with magnification
factor 1/l. We then observe the fluctuations on their natural or intrinsic scale
of variation. Typically, we will model ρ(z) as a stationary random process.
We discuss this modeling in more detail in Section 4.5. We consider a model
as shown in Figure 4.3:

ρ =




ρ0 if z < 0 ,
ρl(z) := ρ(z/l) if z ∈ [0, L] ,
ρ1 if z > L ,

(4.20)

K =





K0 if z < 0 ,
Kl(z) := K(z/l) if z ∈ [0, L] ,
K1 if z > L .

(4.21)

In later chapters we will also consider wave propagation in three-dimensional
layered media. An example is shown schematically in Figure 4.4. where a
point source emits a spherical pulse that is incident on a heterogeneous, lay-
ered section. Before addressing the limit problem l→ 0, we introduce several
important transformations of the wave equations.

z = Lz = 0

Fig. 4.3. Schematic of a heterogeneous slab embedded between two homogeneous
half-spaces, with a pulse incident from the left.

4.3 Boundary Conditions and Equations for Right- and
Left-Going Modes

As shown before, in Section 3.2, in each homogeneous half-space the wave can
be decomposed into a right-going wave Aj and a left-going wave Bj (j = 0
for the left half-space and j = 1 for the right half-space):

u(t, z) = ζ
−1/2
0

A0(t, z) + B0(t, z)

2
, p(t, z) = ζ

1/2
0

A0(t, z)−B0(t, z)

2
, z < 0 ,

u(t, z) = ζ
−1/2
1

A1(t, z) + B1(t, z)

2
, p(t, z) = ζ

1/2
1

A1(t, z)−B1(t, z)

2
, z > L,

The pressure p(t, z) and velocity u(t, z) in a heterogeneous medium with density ρ(z) and bulk
modulus K(z) verify

ρ(z)
∂u(t, z)

∂t
+
∂p(t, z)

∂z
= 0,

1

K(z)

∂p(t, z)

∂t
+
∂u(t, z)

∂z
= 0.

We consider a continuously-fluctuating heterogeneous slab of thickness L in-between two
homogeneous half-spaces

ρ(z) =


ρ0 if z < 0

ρ(z/`) if z ∈ [0, L]

ρ1 if z > L

, K(z) =


K0 if z < 0

K(z/`) if z ∈ [0, L]

K1 if z > L

.

where ` is a characteristic scale of fluctuations in the heterogeneous medium (typically a
correlation length in a random medium).
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Boundary conditions

70 4 Effective Properties of Randomly Layered Media

How can we characterize this equivalent medium? We start by writing the
medium parameters in the form

ρ = ρ(z/l) , K = K(z/l) , (4.19)

with l a parameter that can be viewed as the layer size. Thus, ρ(z) is the
variable density when observed through a magnifying glass with magnification
factor 1/l. We then observe the fluctuations on their natural or intrinsic scale
of variation. Typically, we will model ρ(z) as a stationary random process.
We discuss this modeling in more detail in Section 4.5. We consider a model
as shown in Figure 4.3:

ρ =




ρ0 if z < 0 ,
ρl(z) := ρ(z/l) if z ∈ [0, L] ,
ρ1 if z > L ,

(4.20)

K =





K0 if z < 0 ,
Kl(z) := K(z/l) if z ∈ [0, L] ,
K1 if z > L .

(4.21)

In later chapters we will also consider wave propagation in three-dimensional
layered media. An example is shown schematically in Figure 4.4. where a
point source emits a spherical pulse that is incident on a heterogeneous, lay-
ered section. Before addressing the limit problem l→ 0, we introduce several
important transformations of the wave equations.

z = Lz = 0

Fig. 4.3. Schematic of a heterogeneous slab embedded between two homogeneous
half-spaces, with a pulse incident from the left.

4.3 Boundary Conditions and Equations for Right- and
Left-Going Modes

As shown before, in Section 3.2, in each homogeneous half-space the wave can
be decomposed into a right-going wave Aj and a left-going wave Bj (j = 0
for the left half-space and j = 1 for the right half-space):

u(t, z) = ζ
−1/2
0

A0(t, z) + B0(t, z)

2
, p(t, z) = ζ

1/2
0

A0(t, z)−B0(t, z)

2
, z < 0 ,

u(t, z) = ζ
−1/2
1

A1(t, z) + B1(t, z)

2
, p(t, z) = ζ

1/2
1

A1(t, z)−B1(t, z)

2
, z > L,

In the half-spaces, the solution is decomposed as right- and left-going waves

A0(t, z) = ζ
−1/2
0 p(t, z) + ζ

1/2
0 u(t, z), B0(t, z) = −ζ−1/2

0 p(t, z) + ζ
1/2
0 u(t, z), z < 0

where c0(z) =
√

K0(z)/ρ0(z) and ζ0(z) =
√

K0(z)ρ0(z), and

A1(t, z) = ζ
−1/2
1 p(t, z) + ζ

1/2
1 u(t, z), B1(t, z) = −ζ−1/2

1 p(t, z) + ζ
1/2
1 u(t, z), z > L

where c1(z) =
√

K1(z)/ρ1(z) and ζ1(z) =
√

K1(z)ρ1(z).
We are still interested in the scattering of an incoming wave from the left

A0(t, z) = f

(
t −

z

c0

)
, B1(t, z) = 0
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Projection along constant characteristics in the heterogeneous slab

Within the heterogeneous slab, we decompose the field along right- and left-going waves of an
homogenized medium (whose precise parameters c and ζ will be discussed later)

A = ζ
−1/2

p + ζ
1/2

u, B = −ζ−1/2
p + ζ

1/2
u

Using the equilibrium equation for (u, p), this decomposition yields

∂A

∂z
=

1

ζ
1/2

∂p

∂z
+ ζ

1/2 ∂u

∂z
= −

1

c

(
∆

(+)
`

∂A

∂z
+ ∆

(−)
`

∂B

∂z

)
where

∆
(±)
` (z) = ∆(±)

( z
`

)
=

1

2

(
ρ(z/`)

ρ
±

K

K(z/`)

)
A similar decomposition starting from ∂B/∂z yields the system

∂

∂z

[
A
B

]
= −

1

c

[
∆

(+)
` ∆

(−)
`

−∆
(−)
` −∆

(+)
`

]
∂

∂t

[
A
B

]
.

Contrarily to the homogeneous case, the right- and left-going modes are now coupled by the
heterogeneities.
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Centering of the modes

We consider moving frames following the right- and left-going modes.

a(s, z) = A
(
s +

z

c
, z
)
, b(s, z) = B

(
s −

z

c
, z
)

In a 1D homogeneous medium, the solutions do not really depend on s because in the moving
frames, the shapes are constant.
In Fourier space (and considering ω as a parameter)

dâ

dz
=

∫
R
e iωs

∂

∂z
A
(
s +

z

c
, z
)
ds =

∫
R
e iωs

(
1

c

∂A

∂s

(
s +

z

c
, z
)

+
∂A

∂z

(
s +

z

c
, z
))

ds

= −
iω

c

∫
R
e iωs

(
a(s, z)−∆

(+)
` (z)a(s, z)−∆

(−)
` (z)b

(
s +

2z

c
, z

))
ds

= −
iω

c

((
1−∆

(+)
` (z)

)
â(ω, z)−∆

(−)
` (z)e−2iωz/c b̂(ω, z)

)
Eventually, with similar transformation for the left-going mode

d

dz

[
â

b̂

]
=

iω

c

−(1−∆
(+)
` (z)

)
∆

(−)
` (z)e−2iωz/c

−∆
(−)
` (z)e2iωz/c

(
1−∆

(+)
` (z)

) [â
b̂

]
.
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Transforming a BVP into an IVP

To transform the formulation into an IVP, we introduce the propagator Pω , a 2× 2 matrix
solution of the IVP

d

dz
Pω(z) = Hω

(
z,

z

`

)
Pω(z), Pω(0) = I2

where

Hω(z, z ′) =
iω

c

[
−
(
1−∆(+)(z ′)

)
∆(−)(z ′)e−2iωz/c

−∆(−)(z ′)e2iωz/c
(
1−∆(+)(z ′)

) ]
depends on both the slow (z) and fast (z ′) variables
The propagator propagates the solution to all positions z given the solution in z = 0[

â(ω, z)

b̂(ω, z)

]
= Pω(z)

[
â(ω, 0)

b̂(ω, 0)

]
.
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Averaging theorem

Now that the system is under an appropriate form, we can use (a first basic form of) an averaging
theorem for systems of random differential equations

Theorem 1 (A ”qualitative” averaging theorem )

Let Y be an ergodic random process and F (z,Y ,X ) a smooth function that increases at most
linearly in X . The solution X of the random differential equation

dX

dz
= F

(
z,Y

( z
`

)
,X (z)

)
, X (0) = x0

converges for small ` to the solution X of the deterministic differential equation

dX

dz
= F

(
z,X (z)

)
, X (0) = x0

where

F (z, x) = lim
L→∞

1

L

∫ L

0
F (z,Y (y), x)dy = E[F (z,Y , x)]

Note that the small scale ` only enters through the driving random process Y and the expectation
for F is taken with x and z fixed.
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Main steps of the ”proof”

1 We have

X (z)− X (z) =

∫ z

0
F
(
y ,Y

( y
`

)
,X (y)

)
dy −

∫ z

0
F
(
y ,X (y)

)
dy

=

∫ z

0

(
F
(
y ,Y

( y
`

)
,X (y)

)
− F

(
y ,Y

( y
`

)
,X (y)

))
dy + g(z)

with

g(x) =

∫ z

0

(
F
(
y ,Y

( y
`

)
,X (y)

)
− F

(
y ,X (y)

))
dy

With some assumptions on the regularity of F (with respect to X ), we have∣∣∣X (z)− X (z)
∣∣∣ ≤ C

∫ z

0

∣∣∣X (y)− X (y)
∣∣∣ dy + |g(x)|

2 The law of large numbers implies that lim`→0 |g(x)| = 0.

3 Finally, Gronwall’s lemma states that, for t ≥ 0 and A,B ≥ 0,

Z(t) ≤ A + B

∫ t

0
Z(s)ds =⇒ Z(t) ≤ AeBt ,

which allows to conclude.
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Application of the averaging theorem to our problem

We have Y (z) = (ρ(z),K(z)) and

∆
(±)
` (z) = ∆(±)

( z
`

)
=

1

2

(
ρ(z/`)

ρ
±

K

K(z/`)

)

so that, choosing ρ = E[ρ] and K = E[1/K ]−1, we have

E[∆
(+)
` (z)] = 1, E[∆

(−)
` (z)] = 0

The right-hand side of the propagator equation is Fω(z,Y (z ′),X (z)) = Hω(z, z ′)Pω(z), with

Hω(z, z ′) =
iω

c

[
−
(
1−∆(+)(z ′)

)
−∆(−)(z ′)e−2iωz/c

∆(−)(z ′)e2iωz/c
(
1−∆(+)(z ′)

) ]
so that the averaging theorem predicts that the homogenized solution P verifies

dPω(z)

dz
= 0, P(0) = I2

so that Pω(z) = I2 at all positions, which is the result of a wave equation in a homogeneous
medium (remember the rescaling of the right- and left-going modes ! !).
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Discussion

The bound that we used in the ”proof” may diverge at large times ?

The homogenized solution of the previous section was very particular in the sense that it was
deterministic. Often, only functionals (quantities of interest) will be deterministic but not the
solution itself.

In this next part, we consider a case where the solution is stochastic, but the norm of the
transmission coefficient |T (ω)|2 is deterministic
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Transmission of energy through a slab of random medium

176 7 Transmission of Energy Through a Slab of Random Medium

out in the weakly heterogeneous regime. In Section 7.4 we show that it can be
extended to the strongly heterogeneous white-noise regime (Proposition 7.7).

7.1 Transmission of Monochromatic Waves

We consider the acoustic wave equations in one dimension (3.3) with a slab
of random medium in (0, L) and surrounded by a homogeneous medium. We
assume matched medium boundary conditions at both ends of the slab, that
is, the parameters of the homogeneous half-spaces are equal to the effective
parameters of the random slab. We consider a right-going monochromatic
wave incident from the homogeneous left half-space. We will analyze first
reflection and transmission by the random slab in the weakly heterogeneous
regime (5.16) introduced in Chapter 5. In this regime the correlation length of
the fluctuations in the medium properties is of order ε2, as is the wavelength.
They are both much smaller than the size of the slab, which is of order 1. The
typical amplitude of the fluctuations of the medium is small, of order ε in this
regime. We assume that the medium parameters have the form

1

K(z)
=





1

K

(
1 + εν

( z

ε2

))
for z ∈ [0, L] ,

1

K
for z ∈ (−∞, 0) ∪ (L,∞) ,

ρ(z) = ρ̄ for all z ,

where ν is a zero-mean, stationary random process satisfying strong decorre-
lation conditions. As in Chapter 6, we assume that the fluctuations have the
form ν(z) = g(Y (z)), where Y is a homogeneous in z Markov process with
values in a compact space. We assume that it is strongly ergodic, satisfying
the Fredholm alternative for solutions of the Poisson equation as in Section
6.3.3. The function g is a bounded real-valued function satisfying the centering
condition E[g(Y (0))] = 0. In the weakly heterogeneous scaling regime (5.16)
the frequency of the monochromatic waves is ω/ε2.

!
0 L z

!

T ε
ω(0, L)ei[ωz/(c̄ε2)−ωt/ε2]

"

Rε
ω(0, L)e−i[ωz/(c̄ε2)+ωt/ε2]

!

ei[ωz/(c̄ε2)−ωt/ε2]

Random slab

Fig. 7.1. Reflection and transmission of monochromatic waves.

We denote by ûε and p̂ε the time-harmonic complex velocity and pressure
fields

We consider a continuously-fluctuating heterogeneous slab of thickness L in-between two
homogeneous half-spaces

ρ(z) = ρ,
1

K(z)
=


1
K

if z < 0
1
K

(
1 + εν

(
z
ε2

))
if z ∈ [0, L]

1
K

if z > L

.

where ν(z) = g(Y (z)) is a zero-mean, stationary random process, and Y is a homogeneous in z
Markov process (other technical hypotheses required). We consider the weakly-heterogeneous
scaling regime, and the frequency of the incoming wave is ω/ε2.
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The boundary value problems for right- and left-going modes

The setting is exactly the same as in the previous part, so we retrieve the equation for the
centered right- and left-going modes (at frequency ω/ε2) :

d

dz

[
âε

b̂ε

]
=

iω

cε2

[
−
(
1−∆(+)(z)

)
−∆(−)(z)e−2iωz/cε2

∆(−)(z)e2iωz/cε2 (
1−∆(+)(z)

) ] [
âε

b̂ε

]
.

where

∆(±)(z) =
1

2

(
ρ(z)

ρ
±

K

K(z)

)
=

1

2

(
1± 1± εν

( z

ε2

))
Eventually, the modes verify

d

dz

[
âε

b̂ε

]
=

1

ε
Hω
( z

ε2
, ν
( z

ε2

))[âε
b̂ε

]
.

with

Hω(z, ν) =
iω

2c
ν

[
1 −e−2iωz/c

e2iωz/c −1

]
and boundary conditions at the interfaces with the half-spaces.
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Properties and parameterization of the propagator

As earlier, we introduce the propagator Pω(z), the 2× 2 matrix solution of the IVP

d

dz
Pω(z) =

1

ε
Hω
( z

ε2
, ν
( z

ε2

))
Pω(z), Pω(0) = I2

Note that the function Hω depends on ε through both arguments so the previous averaging
theorem cannot be used.
We observe that if [αω , βω]T is a solution of the propagator equation with initial value [1, 0]T ,
then the properties of Hω imply that

d

dz

[
βω(z)
αω(z)

]
=

1

ε
Hω
( z

ε2
, ν
( z

ε2

))[
βω(z)
αω(z)

]
, with

[
βω(0)
αω(0)

]
=

[
0
1

]
so we can parameterize the propagator as

Pω =

[
αω βω
βω αω

]
Using Jacobi’s formula for the derivative of a determinant

d

dz
detPω = Tr

(
(detPω)P−1

ω

d

dz
Pω

)
= detPωTr

(
P−1
ω HωPω

)
= 0

The initial condition yields detPω = 1 and |αω(z)|2 − |βω(z)|2 = 1, for all z ≥ 0.
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Quantities of interest

We are still interested in the reflection and transmission coefficients, now in the frequency
domain, for a unit input load f̂ (ω) = 1,

R̂εω = b̂εω(0), T̂ εω = âεω(L)

Since we considered a matched medium,[
T̂ (ω)

0

]
= Pω(L)

[
1

R̂(ω)

]
,

we obtain

R̂(ω) = −
βω

αω
, T̂ (ω) =

1

αω
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A result in asymptotic analysis of random ODEs

Theorem 2 (Averaging in the weakly heterogeneous scaling regime)

Let X ε(z) for z ≥ 0 be the process in Rd defined by the random differential equation

dX ε

dz
(z) =

1

ε
F
(
X ε(z),Y

( z

ε2

)
,
z

ε2

)
,

starting from X ε(0) = x0 ∈ Rd . Assume that Y (z) is a z-homogeneous Markov ergodic process
(other technical hypotheses required), and the Rd -valued function F , periodic with respect to τ

of period Z0, satisfies the centering condition
∫ Z0

0 E[F (x ,Y (0), τ)]dτ = 0. Assume also that
F (x , y) is at most linearly growing and smooth in x. Then the random processes X ε(z) converge
in distribution to the Markov diffusion process X (z) with generator :

Lφ =
1

Z0

∫ Z0

0

∫ ∞
0

E [F (x ,Y (0), τ) · ∇(F (x ,Y (z), τ + z) · ∇φ)] dzdτ

Proof : see 2

2. J.-P. Fouque et al. Wave propagation and time reversal in randomly layered media. T. 56. Stochastic Modelling and Applied Probability. Springer, 2007
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Computational aspects for a particular form of the functional F
We assume additionally that the variable X ε is a d × d-matrix and the functional has the specific
form

F(P, y , τ) =
n∑

p=1

g (p)(y , τ)h(p)P

where h(p) are constant matrices, g (p)(y , τ) are real-valued scalar functions of y ∈ S and τ ∈ R
verifying E[g (p)(Y (0), τ)] = 0. Then the limit generator is

Lφ(P) =
1

2

n∑
p,q=1

Cpq

(
h(p)P

)
· ∇
(
h(q)P · ∇φ(P)

)
where

Cpq = 2
1

Z0

∫ Z0

0

∫ ∞
0

E[g (p)(Y (0), τ)g (q)(Y (z), τ + z)]dzdτ

We also introduce the square root of the symmetric part of the correlation σ̃2 = C(S), and

h̃` =
n∑

p=1

σ̃`php .

Then the limit diffusion process P(z) is identified with the solution of the Stratonovich stochastic
differential equation

dP(z) =
n∑
`=1

h̃`P(z) ◦ dW`(z) +
1

2

n∑
p,q=1

C
(A)
pq hqhpP(z)dz, P(0) = I2

where the W`(z) are independent standard Brownian motions.
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Back to the transmission of energy through the random slab

We are interested in the limit process (for ε→ 0) of the propagator equation

d

dz
Pω(z) =

1

ε
Fω
(
Pω , ν

( z

ε2

) z

ε2

)
=

1

ε
Hω
( z

ε2
, ν
( z

ε2

))
Pω(z), Pω(0) = I2

where

Fω(Pω , ν, z) =
iω

2c
ν

[
1 −e−2iωz/c

e2iωz/c −1

]
Pω

=
iω

2c
ν

[
1 0
0 −1

]
Pω −

ω

2c
ν sin

(
2ωz

c

)[
0 1
1 0

]
Pω −

iω

2c
ν cos

(
2ωz

c

)[
0 1
−1 0

]
Pω

We identify n = 3, Z0 = πc/ω

g (1)(ν, τ) = ν, g (2)(ν, τ) = ν sin

(
2ωτ

c

)
, g (3)(ν, τ) = ν cos

(
2ωz

c

)

h(1) =
iω

2c

[
1 0
0 −1

]
, h(2) = −

ω

2c

[
0 1
1 0

]
, h(3) =

ω

2c

[
0 −i
i 0

]
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The covariance matrix

We have

Cpq = 2
1

Z0

∫ Z0

0

∫ ∞
0

E[g (p)(Y (0), τ)g (q)(Y (z), τ + z)]dzdτ

and obtain

C =

γ(0) 0 0

0 1
2
γ(ω) − 1

2
γ(s)(ω)

0 1
2
γ(s)(ω) 1

2
γ(ω)

 ,
as a function of the covariance of the bulk modulus

γ(ω) = 2

∫ ∞
0

E[ν(0)ν(z)] cos

(
2ωz

c

)
dz

γ(s)(ω) = 2

∫ ∞
0

E[ν(0)ν(z)] sin

(
2ωz

c

)
dz

In these functions, the scaling of wavelength λ = 2πc/ω and correlation length is important to
drive the interaction of the wave with the fluctuations.
Additionally

σ̃ =


√
γ(0) 0 0

0
√

1
2
γ(ω) 0

0 0
√

1
2
γ(ω)

 , C(A) =

0 0 0

0 0 − 1
2
γ(s)(ω)

0 1
2
γ(s)(ω) 0

 .
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More ingredients

Then the limit diffusion process P(z) is identified with the solution of the Stratonovich stochastic
differential equation

dP(z) =
n∑
`=1

σ̃``h
(`)P(z) ◦ dW`(z) +

1

2

n∑
p,q=1

C
(A)
pq hqhpP(z)dz, Xi (0) = x0,i

where the W`(z) are independent standard Brownian motions.
More in details :

dP(z) =
iω
√
γ(0)

2c

[
1 0
0 −1

]
P(z) ◦ dW1(z)−

ω
√
γ(ω)

2
√

2c

[
0 1
1 0

]
P(z) ◦ dW2(z)

−
iω
√
γ(ω)

2
√

2c

[
0 1
−1 0

]
P(z) ◦ dW3(z)−

iω2γ(s)(ω)

8c2

[
1 0
0 −1

]
P(z) ◦ dz

or, in Itô form

dP(z) =
iω
√
γ(0)

2c

[
1 0
0 −1

]
P(z)dW1(z)−

ω
√
γ(ω)

2
√

2c

[
0 1
1 0

]
P(z)dW2(z)

−
iω
√
γ(ω)

2
√

2c

[
0 1
−1 0

]
P(z)dW3(z)−

iω2γ(s)(ω)

8c2

[
1 0
0 −1

]
P(z)dz −

ω2(γ(0)− γ(ω))

8c2
P(z)dz
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Limit process for transmission through a random slab

We are interested in the transmission coefficient

|T̂ (ω)|2 =
1

|αω |2

After (lengthy) computations, one obtains that, with probability one

lim
L→∞

1

L
ln
(
|T̂ (ω)|2

)
= −

1

Lloc

where the so-called localization length is defined as

Lloc(ω) =
4c2

γ(ω)ω2
.

More precisely, one can show that

lim
L→∞

|T̂ (ω)|2 = exp

(
−

L

Lloc(ω)
−

√
2

Lloc(ω)
W ∗(L)

)

where W ∗(z) is a standard Brownian motion.
It is a rather extraordinary effect that (with 1D heterogeneity only) the decay of the transmission
is exponential, whatever the strength of fluctuations. This is Anderson localization 3.

3. P. W. Anderson. “Absence of diffusion in certain random lattices”. In : Phys. Rev. 109.5 (1958), p. 1492-1505. doi : 10.1103/PhysRev.109.1492
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Transmission of energy in the strongly heterogeneous regime

176 7 Transmission of Energy Through a Slab of Random Medium

out in the weakly heterogeneous regime. In Section 7.4 we show that it can be
extended to the strongly heterogeneous white-noise regime (Proposition 7.7).

7.1 Transmission of Monochromatic Waves

We consider the acoustic wave equations in one dimension (3.3) with a slab
of random medium in (0, L) and surrounded by a homogeneous medium. We
assume matched medium boundary conditions at both ends of the slab, that
is, the parameters of the homogeneous half-spaces are equal to the effective
parameters of the random slab. We consider a right-going monochromatic
wave incident from the homogeneous left half-space. We will analyze first
reflection and transmission by the random slab in the weakly heterogeneous
regime (5.16) introduced in Chapter 5. In this regime the correlation length of
the fluctuations in the medium properties is of order ε2, as is the wavelength.
They are both much smaller than the size of the slab, which is of order 1. The
typical amplitude of the fluctuations of the medium is small, of order ε in this
regime. We assume that the medium parameters have the form

1

K(z)
=





1

K

(
1 + εν

( z

ε2

))
for z ∈ [0, L] ,

1

K
for z ∈ (−∞, 0) ∪ (L,∞) ,

ρ(z) = ρ̄ for all z ,

where ν is a zero-mean, stationary random process satisfying strong decorre-
lation conditions. As in Chapter 6, we assume that the fluctuations have the
form ν(z) = g(Y (z)), where Y is a homogeneous in z Markov process with
values in a compact space. We assume that it is strongly ergodic, satisfying
the Fredholm alternative for solutions of the Poisson equation as in Section
6.3.3. The function g is a bounded real-valued function satisfying the centering
condition E[g(Y (0))] = 0. In the weakly heterogeneous scaling regime (5.16)
the frequency of the monochromatic waves is ω/ε2.

!
0 L z

!

T ε
ω(0, L)ei[ωz/(c̄ε2)−ωt/ε2]

"

Rε
ω(0, L)e−i[ωz/(c̄ε2)+ωt/ε2]

!

ei[ωz/(c̄ε2)−ωt/ε2]

Random slab

Fig. 7.1. Reflection and transmission of monochromatic waves.

We denote by ûε and p̂ε the time-harmonic complex velocity and pressure
fields

We consider the same setting as earlier, in the strongly scattering regime, where the frequency of
the incoming wave is ω/ε.

ρ(z) = ρ,
1

K(z)
=


1
K

if z < 0
1
K

(
1 + ε0ν

(
z
ε2

))
if z ∈ [0, L]

1
K

if z > L

.
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Propagator equation in the strong scattering regime

The setting is exactly the same as in the previous part, so we retrieve the equations for the
centered right- and left-going modes (at frequency ω/ε) :

d

dz

[
âε

b̂ε

]
=

iω

cε

[
−
(
1−∆(+)(z)

)
−∆(−)(z)e−2iωz/cε

∆(−)(z)e2iωz/cε
(
1−∆(+)(z)

) ] [
âε

b̂ε

]
.

where

∆(±)(z) =
1

2

(
ρ(z)

ρ
±

K

K(z)

)
=

1

2

(
1± 1± ν

( z

ε2

))
Eventually, the propagator equation is

d

dz
Pω(z) =

1

ε
Hω
( z
ε
, ν
( z

ε2

))
Pω(z), Pω(0) = I2

with

Hω(z, ν) =
iω

2c
ν

[
1 −e−2iωz/c

e2iωz/c −1

]
.
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Another result in asymptotic analysis of random ODEs

Theorem 3 (Averaging in the strongly heterogeneous scaling regime)

Let X ε(z) for z ≥ 0 be the process in Rd defined by the random differential equation

dX ε

dz
(z) =

1

ε
F
(
X ε(z),Y

( z

ε2

)
,
z

ε

)
,

starting from X ε(0) = x0 ∈ Rd . Assume that Y (z) is a z-homogeneous Markov ergodic process
with the same hypotheses as in Theorem 2. Then the random processes X ε(z) converge in
distribution to the Markov diffusion process X (z) with generator :

Lφ =
1

Z0

∫ Z0

0

∫ ∞
0

E [F (x ,Y (0), τ) · ∇(F (x ,Y (z), τ) · ∇φ)] dzdτ
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Another result in asymptotic analysis of random ODEs

With the same (lengthy) computations as in the weak-scattering regime, one obtains that, with
probability one

lim
L→∞

1

L
ln
(
|T̂ (ω)|2

)
= −

1

Lloc

where the localization length in the strong-scattering regime is the low-frequency limit of the
localization length in the weak scattering regime

Lloc(ω) =
4c2

γ(0)ω2
.
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3D Wave propagation in a randomly-layered medium

The pressure p(t, z) and velocity u(t, z) in a layered medium with density ρ(z) and bulk modulus
K(z) verify

ρ0
∂u
∂t

+∇p = 0,

1

K0

∂p

∂t
+∇ · u = 0.

We write x = (x , y), and decompose u = (v , u) in the plane orthogonal to ez and along ez .
We consider Fourier transform in time and space (only horizontal)

p̂(ω,κ, z) =

∫
R

∫
R2

e iω(t−κ·x)p(t, x , z)dtdx

and similar definition for û(ω,κ, z) and v̂(ω,κ, z).
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Localization length in a 3D problem with 1D randomness

Eventually, the equation driving (p̂, û) (for z 6= zs) is

dp̂

dz
= iωρ(z)û

dû

dz
= iω

(
1

K(z)
−

κ2

ρ(z)

)
p̂

where κ = |κ|. For small enough κ, this equation has the same form as in a 1D medium, with
velocity

c(κ) =
c√

1− κ2c2

and c defined as before.
The localization length for a mono-chromatic wave is, for instance in the strong scattering
regime, is therefore

Lloc(ω) =
4c2

γ(0)ω2
(
1− κ2c2

) .
which diverges at κ = 1/c.
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