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Acoustic wave propagation in a homogeneous medium

The pressure p(t, z) and velocity u(t, z) in a homogeneous medium with density po and bulk
modulus Ky verify

Oou
ot

1 9p
——+V.u=0.
Ko 6t+ v

PO +VP:F:

where F is an external force.
This can be rewritten as a standard wave equation for the pressure only :

1 6%p
2P Ap=-V.F
c2 ot2 P

where ¢g = 1/Ko/po is the wave velocity in the medium.
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Decomposition into right- and left-going modes
For a large part of this talk, we concentrate on the 1D case.

Acoustic wave equation in a homogeneous 1D medium

du  Op

—4+==F
Crrar i
10p v
Ko 8t 8z

The system can be rewritten in terms of right-going wave A(t,z) and left-going waves B(t, z) as

oA 1 0A
A f
oz + co Ot 32 (1)
0B 1 0B
— - —— = =4(2)f
9z o ot (=)D
where A(t,z) = 1/2 p(t,z) + Cém (t,z) and B(t,z) = ~1/2 p(t,z) +§0 u(t,z) and

¢o = VKopo is the impedance. We have assumed F(t,z) = 2(1/25(z)f(t).
@ The modes propagate independently one from the other (only in a homogeneous medium)

away from the source.
A(t,z):a(t—i), B(t,z):b(t+i)
(<] [<0]

@ The point load generates two waves (one in each direction) of equal energy
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Numerical illustration of acoustic wave propagation in a 1D medium
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(a) po(2) = exp(—2%), p1(z) =0 (b) po(2) =0, p1(2) = exp(—2z?)

FIGURE — Waves generated for two sets of initial conditions p(t = 0, z) = po(z) and d:p(t = 0, z) = p1(z) and
no load. The spatial profiles of the field p(t, z) are plotted at different times.
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Numerical illustration of acoustic wave propagation in a 1D medium
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(a) Pressure p(t, z) (b) Velocity u(t, z)

FIGURE — Waves generated by a point load F(z, t) = §(z) exp(—t?) in a medium initially at rest.
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Scattering by a single interface

Ao(t,0)
A, Aq(t, L)
AN
Bo(t,0) /\

-

0

Medium 0 Medium 1

We consider two half-spaces, separated by an interface at z =10

o ifz<0 Ko ifz<0 K
P =" TT K@= oo G4 =K
p1 ifz>0 Ky ifz>0 pj

In terms of right- and left-going modes in each of the half-spaces, the equations are

9 [A] _1[-1 0] 9 [Ao O [A] _1]-1 0] 9 [A
9z |Bo] ¢ |0 18t |Bo|’ 8z |Bi] < |0 1]ot |[Bi]’
The continuity of pressure and velocity at the interface z = 0 induces in terms of modes
Ae0)] _y [Ao(t0)] ) [T A7
B, (£.0)| =70 |Bo(t0)|* Y0 = rgf) ASIR

where réi) = (\/ C1/Go £ \/Co/Q) /2 and Jg is the interface propagator.
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Reflection and transmission at a single interface

Ao(t,oy\ e
VAN
Bo(t,0) /\

0 z

Medium 0 Medium 1

Assuming an incoming wave from the left on the interface, and no incoming wave from the right

Ao(t,0) = f(t), Bi(t,0)=0,
the reflection Rg and transmission 7q coefficients at the interface are defined as

)

(7
1
Bo(t,0) = Rof (1) = — 0 £(2),  Ax(t,0) = Tof () = (1),
o o

with RZ 4+ T2 = 1.
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Numerical illustration of reflection and transmission at a single interface
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(a) Pressure p(t, z) (b) Velocity u(t, z)

FIGURE — Waves generated at a single interface by a wave incoming from the left.
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Scattering by a homogeneous slab

Ao(t,0)
A As(t, L)
N WAN
By(t,0) _
VAN
0 L z
Medium 0 Medium 1 Medium 2

We consider a homogeneous slab of thickness L in-between two homogeneous half-spaces

po ifz<O0 Ky ifz<O0 K.
p(2)=4p ifzelo,l], K@) =qK ifzelo,l], ¢=4/=2, ¢=1/Kp;
pr ifz>L Ky ifz>L Pi

In terms of right- and left-going modes in each of the domains, 0 < j < 2, the equations are
O [A]_1[-1 0] 2[4
9z |B; G 0 1] ot Bl

Ao(t,0) = f(t), Ba(t,L)=0

We assume, as earlier,
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Frequency-dependent interface propagator

The continuity of pressure and velocity at the interfaces z = 0 and z = L induces

{giggﬂ ~ [B;((rt,)oﬂv [Az(é, L)} _, [gigj fﬂ . with Jj = [;?Hz 5;4 ,

and r®) = (/§51/G % /G/G+1) /2. Equivalently -

plea) - la]. [)-a e

The time delay makes the situation more complex to handle than for a single interface. In the
frequency domain, time shifts are transformed into phase factors, as

e R P R e AT S M

where a hat denotes a Fourier transform 4;(w) = [ a;(t)e/“tdt and

/ aj(t — to)e'“tdt = &j(w)e™
R
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Vi(w)

Reflection and transmission of a homogeneous slab
O(w)]’

( ) (o — |06
()}, Ro(w) = J1(w)do [v(w)

Finally
|:§ng)1| = Ko(w) [BO 2
Defining the reflection R(w) and transmission 7 (w) coefficients of the slab as
a(w) = T(w)(w),

(w) = R(w)f (w),

by
we obtain .
A~ jwl
A V(w) Rie” a1 4+ Ro
Rw)=-=—= = 2iwl’
Ulw) 14+ ReRie" @
jwl
1 __ ToTes
B 2jel”’
1+ RoR1e

Tw) ==
U(w)

and R; and 7; are the reflection and transmission coefficients of interface ;.
Sept. 2020
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Numerical illustration of reflection and transmission on a homogeneous slab
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FIGURE — Sketch of scattering sequence for a wave incoming from the left on a homogeneous slab.
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(a) Pressure p(t, z) (b) Velocity u(t, z)

FIGURE — Waves scattered by a homogeneous slab from a wave incoming from the left.
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Effective properties of a finely-layered slab

Ag(t,0)

S\

By(t,0)

AV

L] L2

A1 (t, L)
WA

¥4

Medium 0

Multilayer slab

Medium 2N+ 7

We consider a multi-layered with 2N layers in-between two homogeneous half-spaces

(pe, Ke)
(Pa, Ka)

(p, K)(2) = (o0, Ks)

(pe/ ) Ke/)

ifz< Ly

if z € [Lyj, Loj41],
if z € [Lajy1, Lo+l

if z> Loy

We introduce the thicknesses and time lags, j > 1 :

R. Cottereau (CNRS)

Aj=Lj—Lj 4
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.j:O717"'7N_17
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Interface propagator for a pair of interfaces

The scattering problem is set as

PZNBI(M)] = Koy (w) [Bi)((o:;))} . Kon(w) = Jon(w)dan—1(w) (H (W) 1(“’))

The interface propagator for a pair of two successive interfaces is

Y L Ay N L Dy
O B e e I B T
2j(W)dzj—1(w) = w2 CiwBai ) w21 e P

(=) r(He 3 ‘e ca r ca

r 2j—1 , B2

o) 0 O [rOs )

= - Y (+) ) (=) )
0 e—iw( = +c—bf> —ris; rs;

where r(¥) = (\/gb/ga + \/ga/<b> /2, with r()2 — 1(5)2 = 1 and

. Do .
S}i) = :I:Zei'wéia sin (wﬂ>
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Effective properties of a finely-layered slab : periodic case

We now assume a periodic case, with all layers of the same thickness, 1 < j < N

1 1 2 A
Dgj1 =Dy = A, (* + *) =2 51(i) = i2""?b +0(8%)

Ca Cp
and N1
Ron(w) = Jan(w, 8)Jon-1(w, ) (3w, 8)) " Jo.
where
1 A L))
O, 8) =l +2iwA | €y Ey P | +0(A7)
TS
and (+) (=) L ) (=)
N—1 + - iws + -
i 3@ — Th Ths e c 0 a Iva
AIIE;'O (J (w,A)) |:r£*—) rt(;:):| l: 0 e—w.):| |:(—) I’,E-:)]

Eventually (using also that Joyn(w, A)doy—_1(w, A) = a0 Jerp)

N
im R — ., (i®
Jim Rons1(w) = Jera (30w, 8)) " .
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Numerical illustration of a wave impacting a periodic slab
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FIGURE — Waves generated around periodic slabs with different periods by a wave incoming from the left. The
half-spaces have the same properties as the homogenized medium.

@ In the limit A — 0, we retrieve a homogeneous equation

@ When the wave enters (resp. exits) the slab, it interacts with the homogenized medium,

NOT the first (resp. last) layer.
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Effective properties of a randomly-layered slab with two materials
We assume the layer thickness is now a random variable

Aj =6y

where § > 0 and the U; are independent and identically distributed uniform random variables over

[1/2,3/2]. The thickness of the slab is a random variable L with

2N§?
12

E[l]=2N6 =L, E [(L - Z)2] - 500
The scattering problem yields (again grouping the layers by pairs)
. A A 2 N—1
Kon(w) = Jan(w, A)day—1(w, A) (J (w, A)) Jo.

where Taylor expansion still can be used J®(w,8) = 1, + iw&AJ(.i) + O (62), where

Upj— Uy _ Upj— Uy _y Uy
o [ or( o) g
2 ~2r0) () i =02 (BB g 2 g (002 (Pt

is a random matrix, independent of § and the law of large numbers yields

5@

N |~

N
563702 —nloo SNE [31(21)] -
j=1
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Numerical illustration of a wave impacting a slab with random thicknesses
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FIGURE — Waves generated around a random slabs with different periods by a wave incoming from the left. The
half-spaces have the same properties as the homogenized medium.

@ The result is qualitatively the same as in a periodic medium.
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Effective properties of a finely-layered slab : general stochastic case

SN

z=0 z=1L

The pressure p(t, z) and velocity u(t,z) in a heterogeneous medium with density p(z) and bulk

modulus K(z) verify
ou(t,z)  Op(t,z) _

—_— 0
)= T %, ,
1 0p(t,z)  Ou(t,z) _ 0
K(z) ot 8z

We consider a continuously-fluctuating heterogeneous slab of thickness L in-between two
homogeneous half-spaces

£0 ifz<0 Ko ifz<0
p(z) =< p(z/0) ifzel0, L], K(z)=4K(z/¢) ifze]|0,L].
1 ifz>1L Ki ifz>L

where £ is a characteristic scale of fluctuations in the heterogeneous medium (typically a
correlation length in a random medium).
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Boundary conditions

z=0 z=1L
In the half-spaces, the solution is decomposed as right- and left-going waves
Ao(t,z) = Cgl/Zp(t,z) —+ Cé/Zu(t7 z), Bo(t,z) =—¢;
where cy(2z) = /Ko(2)/po(2) and ¢o(z) = /Ko(z)po(z), and

At,2) = & Pp(t,2) + G Pu(t,2),  Bi(t,z) = —¢ ?p(t,2) + (1 Pu(t,2), z> L

where ¢1(z) = \/Ki1(2)/p1(z) and ¢(1(z2) = VKi(2)p1(2).

We are still interested in the scattering of an incoming wave from the left

Y2p(t,2) + ¢ Pu(t,z), z<0

z

Ao(t,z) =f (t — C—O) , Bi(t,z)=0
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Projection along constant characteristics in the heterogeneous slab
Within the heterogeneous slab, we decompose the field along right- and left-going waves of an

homogenized medium (whose precise parameters € and ¢ will be discussed later)

A 271/2p +Zl/2u» B— 7271/2p +Z1/2“
Using the equilibrium equation for (u, p), this decomposition yields

0A 1 Op -1/20u 1 (+) 0A (,)83)
-~ - ZF R N SR AR N G
0z 21/2 (’)z—’—C *( +

0z c £ Bz £ Bz
A(:i:)(z) NG (f) _ 1 p(z/0) I K
¢ ¢ 2 P K(z/¢)
A similar decomposition starting from 9B /0z yields the system
oAl __tfap) ap) oA
oz |B] ~ T [-al) —alP| ot [B]

Contrarily to the homogeneous case, the right- and left-going modes are now coupled by the
heterogeneities.

where
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Centering of the modes

We consider moving frames following the right- and left-going modes.
a(s,z):A(s-{-;z)7 b(s,z):B(s—é,z)
[4 C

In a 1D homogeneous medium, the solutions do not really depend on s because in the moving
frames, the shapes are constant.
In Fourier space (and considering w as a parameter)

da iws O z _ iws [ 10A z 0A z
EZ/RE gA(er%,z)ds_/]Re (%E(s+%,z)+5<s+%,z)) ds
. ' - 5
= _g e'vs (a(s7 z) — Agﬂ(z)a(s, z) — Ag )(z)b (s + fz,z)) ds

Cc JR C
iw

i ((1 - Ay)(z)) B(w, z) — AL (2)e 27/, z))

Eventually, with similar transformation for the left-going mode

dz

d [3} Cw [~ <1—A2+)(z)> A§*)(2)672iwz/f [;:j

B - ? —A&i)(Z)GZiWZ/E <1 _ Ayr)(z))
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Transforming a BVP into an IVP

To transform the formulation into an IVP, we introduce the propagator P,,, a 2 X 2 matrix

solution of the IVP
z

di'zpw(z) = H, (z, Z) Pu(z), Pu(0)=1

where ( ) ) diwz /T
N iw _ 1_A (z/) A — (Z/)e— lwz/c
Hu(z,2') = =z [_A(—)(z/)em'wz c (1 _ A(+)(Zl))
depends on both the slow (z) and fast (z’) variables
The propagator propagates the solution to all positions z given the solution in z =0

{ggzg] =Pu(2) [ZEZ gﬂ '
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Averaging theorem

Now that the system is under an appropriate form, we can use (a first basic form of) an averaging
theorem for systems of random differential equations
Theorem 1 (A "qualitative” averaging theorem )

Let Y be an ergodic random process and F(z, Y, X) a smooth function that increases at most
linearly in X. The solution X of the random differential equation

dX

X r oy ()X X0

converges for small £ to the solution X of the deterministic differential equation
dX

= =F (Z,Y(z)) . X(0) = x

where

L
F(z,x) = Lllﬁn';o %[) F(z,Y(y),x)dy = E[F(z,Y,x)]

y

Note that the small scale ¢ only enters through the driving random process Y and the expectation
for F is taken with x and z fixed.
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Main steps of the " proof”

@ We have

X(2) = X(2)

Oy () x0) oy = [TF (v X00) o
/( ( (%) >_F(y7y(%>77(}’)))d}’+g(z)

g0)= [ (F(r.Y (5) . X0) = F (X)) o

With some assumptions on the regularity of F (with respect to X), we have

with

(@) =X < € [ x0) =X ay + et

@ The law of large numbers implies that limy_,o |g(x)| = 0.
© Finally, Gronwall's lemma states that, for t > 0 and A, B > 0,

t
Z(t) §A+B/ Z(s)ds = Z(t) < AePt,
0

which allows to conclude.
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Application of the averaging theorem to our problem

We have Y(z) = (p(z), K(z)) and

A (z) =2 () = (p(z/g) LK >

1 2 P K(z/¢)
so that, choosing p = E[p] and K = E[1/K]~!, we have
EAY (2] =1, Ea(2)1=0
The right-hand side of the propagator equation is Fu,(z, Y(2'), X(2)) = Huw (2, 2')Pu(2), with

iw [—(1—AM(Z))  —A)(2)e2iwz/e
Hole) = {As*(z')eﬂwﬂf (1- At

so that the averaging theorem predicts that the homogenized solution P verifies

7‘”3:2(2) —0, P(0)=1h

so that ﬁw(z) = I, at all positions, which is the result of a wave equation in a homogeneous
medium (remember the rescaling of the right- and left-going modes!!).
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Discussion

@ The bound that we used in the " proof’ may diverge at large times?

o The homogenized solution of the previous section was very particular in the sense that it was
deterministic. Often, only functionals (quantities of interest) will be deterministic but not the
solution itself.

@ In this next part, we consider a case where the solution is stochastic, but the norm of the
transmission coefficient |7 (w)|? is deterministic
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Transmission of energy through a slab of random medium

ei[wz/(és2)—wt/52]

Qe VeV

TE(0, L)ez[wz/(és2)—wt/52]
Ve Ve Ve Vi
RE(0, L)e*i[W/(EEQ)ert/g] Random slab
[V a Ve Ve
-
[ L z

We consider a continuously-fluctuating heterogeneous slab of thickness L in-between two
homogeneous half-spaces

% if z<0
_ 1 2 .
p(z) =p, K(Z) = % (1+€V (j)) if z € [O,L] .
= ifz> L

where v(z) = g(Y/(z)) is a zero-mean, stationary random process, and Y is a homogeneous in z
Markov process (other technical hypotheses required). We consider the weakly-heterogeneous
scaling regime, and the frequency of the incoming wave is w/e?.
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The boundary value problems for right- and left-going modes

The setting is exactly the same as in the previous part, so we retrieve the equation for the
centered right- and left-going modes (at frequency w/e?)

d [5] _iw [—(1-aM)(z)) —AC)(z)e2wz/?] Ta¢
dz [b] T @ |a) @)t (1-aW(z) | LB
where

with

g2iwz/c -1

H _ a—2iwz/T
Ho(2,v) = @u[ Lo }

2c
and boundary conditions at the interfaces with the half-spaces.
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Properties and parameterization of the propagator

As earlier, we introduce the propagator P, (z), the 2 X 2 matrix solution of the IVP

Sre - (G (Z) o, mo-

Note that the function H,, depends on € through both arguments so the previous averaging
theorem cannot be used.

We observe that if [aw,ﬁw]T is a solution of the propagator equation with initial value [l,O]T,
then the properties of H,, imply that

d [B,(2)] _1 z 2\ [Bu(2) i B.(0)] _ [0
pre {Ew(z) =Ho (50(3)) a(z)]" Mt |Ga0)] T 1
so we can parameterize the propagator as
p, = [ Po
v |:Bw aw}
Using Jacobi's formula for the derivative of a determinant

d d
— detP, = Tr ((det PW)PJI—PM> =det P, Tr (P;'H,P,) = 0
dz dz

The initial condition yields det P, = 1 and |aw(2)|? — |8w(2)[? = 1, for all z > 0.
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Quantities of interest

We are still interested in the reflection and transmission coefficients, now in the frequency
domain, for a unit input load f(w) =1,

RS =b5(0), 75 =45(0)

Since we considered a matched medium,

we obtain
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A result in asymptotic analysis of random ODEs

Theorem 2 (Averaging in the weakly heterogeneous scaling regime)
Let X¢(z) for z > 0 be the process in RY defined by the random differential equation

%(z) - %F (x@.v (2).2).

starting from X¢(0) = xo € R?. Assume that Y (z) is a z-homogeneous Markov ergodic process
(other technical hypotheses required), and the R9-valued function F, periodic with respect to T
of period Zy, satisfies the centering condition fOZU E[F(x, Y(0),7)]dT = 0. Assume also that
F(x,y) is at most linearly growing and smooth in x. Then the random processes X¢(z) converge
in distribution to the Markov diffusion process X(z) with generator :

1 Zy oo
L= 70/0 /0 E[F(x, Y(0),7) - V(F(x, Y(2),T + z) - V$)] dzdT

Proof : see?

2. J-P. FOUQUE et al. Wave propagation and time reversal in randomly layered media. T. 56. Stochastic Modellin and Applied Probability. Spiinger/2007
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Computational aspects for a particular form of the functional F
We assume additionally that the variable X€ is a d X d-matrix and the functional has the specific
form

F(Py,7) =) gP(y,n)hPpP
p=1

where h(P) are constant matrices, g(P)(y,'r) are real-valued scalar functions of y € S and 7 € R
verifying E[g(P)(Y(0),7)] = 0. Then the limit generator is

Lo(P) = % i Cpq (h(p)P> v (h(q)P ' V¢(P))

p,q=1
where

PSS SR (@)
Cpq = 270/0 /0 E[g'P’(Y(0),7)g'"(Y(2), T + z)]|dzdT

We also introduce the square root of the symmetric part of the correlation &2 = C(5), and
n
he => " Gophp.
p=1

Then the limit diffusion process P(z) is identified with the solution of the Stratonovich stochastic
differential equation

n . 1 n
dP(2) = > hP(z) 0 dWe(2) + 5 3 CPhgh,P(2)dz, P(0) =1,
£=1 p,q=1

where the W;(z) are independent standard Brownian motions.
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Back to the transmission of energy through the random slab

We are interested in the limit process (for € — 0) of the propagator equation

%Pw(z) - %Fw (Pw,u (652) 652) - %Hw (;21/ (652)) P.(z), Pu(0)=1
where

iw 1 _e—2iwz/T
Fu(Pu,v,z) = prd |:e2iwz/f 1 } P.

_ iw [1 0 p w . 2wz 0 1 p iw 2wz 0 1 p
—EV 0 -1 w—Eysm — )l o w—Eucos —~ )|-1 o|P
We identify n =3, Zy = nc/w

g00r) = v @r) = vin (20) g0 = veos (22)
c c

W_fwll o0 @__wl1 @ _ w0 —i
h_zz{o—l’h_ 1o "l o
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The covariance matrix

We have 7
0 oo
=2 [ [ EeP(Y(0). g (¥ (2), 7+ Dldzdr
Zo Jo Jo
and obtain
~(0) 0 0
C=|0 3w -39,
0 (W) 57(w)

as a function of the covariance of the bulk modulus

(W) =2 /0  B[u(0)u(2)] cos (%) dz

) (@) = 2/0oo E[(0)(z)] sin (%) dz

In these functions, the scaling of wavelength A = 27¢/w and correlation length is important to
drive the interaction of the wave with the fluctuations.

Additionally
v/~(0) 0 0 0 0
&= 0 1v(w) 0 . cW=1o 0 ~156(w)
0 l»y(s)(w) 0

0 0 w/%'y(w)
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More ingredients

Then the limit diffusion process P(z) is identified with the solution of the Stratonovich stochastic
differential equation

n 1 n
dP(z) = > 50hOP(2) 0 dW,(2) + 5 2 C$Phgh,P(2)dz,  Xi(0) = xo,;
£=1 p,q=1

where the W;(z) are independent standard Brownian motions.
More in details :

ap(z) = VIO [1 _01} P(2) o Wi (2) — Y 2) [0 1} P(2) 0 dWa(2)

2¢ 0 2v2¢ |1 0
iw w w2~ (w
- 27%(6) {_01 (ﬂ P(2) 0 dWs(z) — 27() [é _01] P(2) o dz

or, in Itd6 form

ap(z) = IO [0 O] P(z)de(z)—@[" o] Pea(a)

% |0 22z |1 0
iwr/v(w w2~ () (w W2 (7(0) — y(w
- ﬁ(f) {_01 (1)} P(2)dWs(z) — gj() [(1) _OJ P(z)dz — wP(z)dz
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Limit process for transmission through a random slab

We are interested in the transmission coefficient

A 1
TP = —
Tl = =
After (lengthy) computations, one obtains that, with probability one
1 o 1
lim S in (1F@)?) = ——
L—oo L Lioc

where the so-called localization length is defined as

4¢?

Lige(w) = ——.
loc( ) ’y(w)oﬂ

More precisely, one can show that

| v L B 2 *
Nim (7 (w)] eP( Lioe(w) \/?(w)W (L)>

where W*(z) is a standard Brownian motion.
It is a rather extraordinary effect that (with 1D heterogeneity only) the decay of the transmission
is exponential, whatever the strength of fluctuations. This is Anderson localization 3.

3. P. W. ANDERSON. “Absence of diffusion in certain random lattices”. In : Phys. Rev. 109.5 (1958), p1492-1505. po1« 10.1103/PhysRev. 169.1492
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Transmission of energy in the strongly heterogeneous regime

ei[wz/(ész)—ut/£2]

A 7= (0, L)el[w/(éfz)—wt/521
AN
RE(0 L)e—i[wz/(652)+wt/s2] Random slab
AN
-
|0 ‘L z

We consider the same setting as earlier, in the strongly scattering regime, where the frequency of
the incoming wave is w/e.

% if z<0
_ 1 .
M= e = %(1-{-601/(6%)) if ze[0,1].
= ifz>L
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Propagator equation in the strong scattering regime

The setting is exactly the same as in the previous part, so we retrieve the equations for the
centered right- and left-going modes (at frequency w/e) :

a2l l8ne

where

w03 (e xgg) -3 013

Eventually, the propagator equation is

z

%Pw(z) - %Hw (Zv(3))Pul@) Pu© =t

with

iw 1 _e—2iuz/E
HW(Z, V) = 5= |:e2iwz/f —1 :| .
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Another result in asymptotic analysis of random ODEs

Theorem 3 (Averaging in the strongly heterogeneous scaling regime)

Let X¢(z) for z > 0 be the process in RY defined by the random differential equation
dxe 1 e z\ z
—@=F(x@.v(5).2).

starting from X¢(0) = xo € RY. Assume that Y (z) is a z-homogeneous Markov ergodic process
with the same hypotheses as in Theorem 2. Then the random processes X€(z) converge in
distribution to the Markov diffusion process X(z) with generator :

1 Zy oo
Lo = 70/0 /0 E[F(x, Y(0),7) - V(F(x, Y(2),7) - V)] dzdT
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Another result in asymptotic analysis of random ODEs

With the same (lengthy) computations as in the weak-scattering regime, one obtains that, with
probability one
1

1 -
lim 7In(7'w 2) =——
L—oo L | ( )l Lloc
where the localization length in the strong-scattering regime is the low-frequency limit of the
localization length in the weak scattering regime
4¢?

Lige(w) = (02
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3D Wave propagation in a randomly-layered medium

The pressure p(t, z) and velocity u(t, z) in a layered medium with density p(z) and bulk modulus
K(z) verify

du
— 4+ Vp=0,
Po ot + Vp

1 9p
%P i v.u=o.
K08t+ Y

We write x = (x, y), and decompose u = (v, u) in the plane orthogonal to e, and along e;.
We consider Fourier transform in time and space (only horizontal)

ﬁ(w,n,z):// ew(t=mX) p(t x, z)dtdx
R JR2

and similar definition for d(w, k, z) and ¥(w, K, z).
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Localization length in a 3D problem with 1D randomness

Eventually, the equation driving (B, 0) (for z # z;) is

% = iwp(z)d

where r = |k|. For small enough k, this equation has the same form as in a 1D medium, with
velocity
c

V1 — k2e?

(k) =

and ¢ defined as before.
The localization length for a mono-chromatic wave is, for instance in the strong scattering
regime, is therefore

4¢?

Lige(w) = W

which diverges at k = 1/C.
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